
Image and van der Waals potentials for a cylindrical (spherical) surface: conductors versus

insulators

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys.: Condens. Matter 3 5847

(http://iopscience.iop.org/0953-8984/3/31/008)

Download details:

IP Address: 171.66.16.147

The article was downloaded on 11/05/2010 at 12:25

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/3/31
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Pbp.: Condens. Matter 3 (1991) 5847-5859. Printed in the UK 
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Received 19 December 1990, in h a l  form 6 March 1991 

Abstract. A second-order perturbative approach is used to derive, respectively, 
expressions for the image and the van der Waals potentials between a partide and 
a conducting substrae with a cylindrical (or a spherical) surface. These expressions 
are valid for all particle-surface separations. Asymptotic forms for these potentials 
are  obtained and haw the following forms: for the image potential i t  obeys a R-' 
law for a pounded spherical surface and a ( R h  R)-' law for a cylindrical surface; 
for the van der Waals potential i t  is a R-' law for a grounded spherical surface and 8 

(R31nR)-' l a w  for a cylindrical surface, where R is the particleesurface separation. 
These asymptotic fomw are quite different from those of insulating substrates with 
the same shape of surface. The main difference between a conducting substrate 
and an insulating substrate is discussed. The difference between a grounded and an 
insulated conducting substrate is also discussed. 

1. Introduction 

The image and the van der Waals potentials are important in the studies of the 
particle-surface interaction. For the former potential the particle involved is a charged 
one (an electron or an ion), and for the latter potential the particle involved is a 
neutral one (an atom). So far the theoretical studies have mainly concentrated on 
the cases in which the surface is either a metal plane surface [I-101 or a spherical 
surface 111-151. Little is known about these two potentials when the surface involved 
is a conducting cylindrical surface (there is an extensive study of the forces between 
macroscopic bodies with the shapes considered here [16]). Even the asymptotic forms 
are not known. For a conducting spherical substrate, because of the finiteness of its 
extent, there is a distinction between a grounded and an insulated substrate. Most of 
the theoretical studies have concentrated on the insulated substrate. The differences 
between these two kinds of substrate have not been fully discussed. 

Hotvever, for insulating substrates there is no distinction between an insulated 
and a grounded substrate. Moreover, the asymptotic forms of the image and the 
van der Waals potentials for insulating substrates are well known for various shapes 
of the surface-planar, spherical and cylindrical. These asymptotic forms can be 
easily deduced from the well-known asymptotic forms of the atom-ion and the atom- 
atom interaction potentials by summing over the pair potentials between the foreign 
particle and the atoms in the substrate. For example, the atom-atom van der Waals 
potential is well known to have a E6-dependence (see for example [17]) for a large 
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interatomic distance R. Therefore the van der Waals potential between an atom and 
an insulating spherical surface obeys the same R-' law if the atom-surface distance 
R is much larger than the radius of the sphere. The potential becomes a R-6 law if 
the surface is cylindrical in shape because the sum over the atoms of the substrate 
contributes a factor R. It is easy to extend the argument to other surface shapes 
and the asymptotic forms of these potentials, together with the well-known results for 
the conducting spherical (see for example [18]) and the results of this paper for the 
conducting cylindrical surfaces, are given in table 1. 

Table 1. Asymptotic forms of the image and the van der Wads (VdW) potentiala for 
variour shapes of surfaces: conductors versus insulators. R is the distance between 
the particle and the surface. 

It  is interesting to  note that for the most well-known cases of the plane and in- 
sulated sphere, the asymptotic R-dependence for both the image and van der LVds 
potentials are independent of the electrical properties of the substrate. As there is no 
difference between a grounded and an insulated conducting substrate in the planar 
surface case [both require the substrate to be at  zero potential in classical electrostat- 
ics), it is then an interesting question to ask whether the asymptotic behaviour of the 
particlesurface interaction potentials depends only on the geometrical shape and not 
on the electrical properties of the substrate, be it an insulator or an insulated conduc- 
tor. The answer is apparently no. A simple example to test is a thin-slab substrate. 
If the substrate is a conducting one, the response of the substrate to external charges 
will differ little from that of a semi-infinite substrate with a planar surface (these two 
substrates are exactly the same in classical electrostatics). However, for insulators, a 
thin-slab substrate is different from a semi-infinite one, because the former extends to 
infinity in two dimensions only. 

From this example we see that a conducting substrate which extends to infinity in 
only one or two dimensions may behave quite differently from an insulating substrate 
with the same geometry. A substrate with a cylindrical surface belongs to this class 
of substrates. Moreover the image potential for a conducting cylindrical surface is 
virtually unknown in classical electrostatics. Therefore the image and van der Waals 
potentials for a conducting cylindrical surface are interesting subjects to investigate. 
In this paper we will derive expressions for these two potentials which are valid for all 
particlesurface separations. The asymptotic forms of these two potentials are shown 
in table 1. We will also derive the same expressions for a conducting spherical surface, 
whose explicit forms have not been derived before. A discussion of the differences 
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between a grounded and an insulated conducting substrate will be given. From this 
we may gain some insights into the properties of the surface response function. 

The main difference between an insulated (uncharged) and a grounded conduce 
ing substrate is that in the insulated case the monopole contribution to the surface 
response function is zero [I91 because of the condition of charge neutrality of the sub- 
strate. The lowest order contribution comes from the dipole terms. In the grounded 
case the electrons in the substrate are not confined in the substrate. They are con- 
nected to a huge electron reservoir and the electrons are free to  move in and out of 
the substrate, i.e. an electric current may be induced in the substrate in the presence 
of an external field. The monopole term in the surface response function is therefore 
non-vanishing (see the explanation in section 3). Thus the asymptotic behaviour of 
the image and van der Waals potentials will usually give lower inverse-R laws for a 
grounded than for a neutral insulated conducting substrate, as in the case of a classi- 
cal conducting sphere. For an infinitely extended Conducting substrate the monopole 
term in the surface response function will always be non-zero because it is the same 
as grounded. 

The situation in an insulating substrate is somewhat different from that of a con- 
ducting substrate. The electrons in an insulating substrate are localized and they are 
not free to move in and out of the substrate even when the substrate is grounded, 
i.e. there is never an induced electric current in an insulator whether it is grounded 
or not. Therefore the monopole term in the surface response function is always zero 
even when the substrate is infinitely extended. The lowest order contribution comes 
from the sum of the atomic polarizations of the atoms in the substrate. The particle 
surface interaction potentials can therefore be approximated by a simple sum over 
pair potentials between the particle and the atoms in the substrate. Therefore, except 
for the semi-infinite case, the asymptotic forms of these potentials usually give higher 
inverse-R laws for an insulating substrate than for a conducting substrate with the 
same shape (cf table 1). 

In section 2, we use a second-order perturbative approach to derive expressions for 
the image and van der Waals potentials for the particlemetallic surface interactions 
when the surface is (i) spherical, and (ii) cylindrical in shape. These two potentials 
are derived in a unified way [IO] and the final expressions are valid for all particle 
surface separations. In section 3, we discuss the differences between a conducting 
and an insulating substrate in response to external fields. The effect of grounding a 
conducting substrate in the surface response function is also discussed. Finally the 
asymptotic forms for the image and van der Waals potentials for spherical (grounded 
or insulated) and cylindrical conducting surfaces are obtained to conclude the section. 

2. Theory 

The image and van der Waals potentials are usually obtained by calculating the self- 
energy of the particlesubstrate system with use of the particle’s Green function. In 
this section we will, however, use asecond-order perturbative approach to calculate the 
self-energy. The usefulness of this approach is that these two potentials can be derived 
in a unified way (IO] and the geometry of the substrate can easily be implemented. If 
the particle involved is a charged one (e.g. an ion) then the calculated self-energy is 
the image potential, and if the particle involved is a neutral one (e.g. an atom) then 
we obtain van der Waals potential. The expressions we obtained for the image and 
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the van der Waals potentials are valid for all particle-surface separations. We now 
describe the theory. 

The unperturbed system consists of a free particle (an ion or an atom) and an 
isolated conducting substrate with a surface (spherical or cylindrical in shape). The 
self-energy of the particle-substrate system is due to the Coulomb coupling between 
the particle and the substrate. We treat the Coulomb coupling as a perturbation. 
When the particle is far away from the surface the firstorder perturbation is zero 
because the substrate we considered is a neutral one. Therefore the lowest contribution 
comes from the second-order perturbation. However, when the particle and the surface 
are close enough and the wavefunctions of the two unperturbed subsystems overlap, 
the firstorder perturbation will be non-zero. In this situation we may consider the 
firstorder perturbation term as part of the Pauli repulsion and the image or van 
der Waals potentials comes from second-order terms only. With this definition the 
expressions we derived for the image and van der Waals potentials are valid for all 
particle-surface separations. 

We now proceed to calculate the perturbation energy between the particle and the 
substrate. The perturbation ? is due to the Coulomb coupling between the particle 
and the substrate, 

Rere +p(r) and 6*(r) are respectively the charge-density operators for the particle and 
the substrate. The charge-density operator for the particle is 

N’ 
+ p ( ~ )  = N 6 ( r  - R) - c6(r - r , )  (2) 

i=l 

where R and T% are respectively the position coordinates of the nucleus and the ith 
electron. N is the charge on the nucleus and N‘ is the total number of electrons in 
the particle (atomic units are used throughout). If N f N’ the particle is a charged 
ion, and if N = N’ the particle is a neutral atom. The image potential (for an ion) or 
the van der Waals potential (for an atom) is given by the second-order perturbation 
energy [IO] 

((OO‘(V(nn’) (2 U=C 
E,, + E,, - E, - E,,, 

n,n’ 
(3) 

where Inn’) denotes a state with the particle in its nth (unperturbed) excited state 
(with energy E,)  and the substrate in its n‘th (unperturbed) excited state (with energy 
E,,), and 100’) is the unperturbed initial ground state. (The effect of the translational 
motion of the particle on the image and the van der Waals potential are negligible for 
thermal ions and atoms. See for example [Z] or [20].) 

Up to this point the geometry of the surface does not enter the theory. When 
we want to calculate the interaction potential U in equation (3), we have to expand 
1/1r - r‘l in equation (1) in a proper form determined by the geometry of the surface. 
Because the result for a planar surface is well known ([Q] and the references therein), 
we only consider the spherical and cylindrical surfaces in the following. 
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2.1. Spherical surface 

When the substrate has a spherical surface, it is convenient to use the spherical coor- 
dinates T = (r,0,+) and the appropriate expansion for 1/1r - r'l is (see for example 
[I81 P 102) 

The absolute square of the matrix element (00'1plnn') in equation ( 3 )  becomes, by 
choosing the centre of the substrate as the origin of the coordinate system, 

The last equality of equation (5) is obtained by the fact that the substrate charge- 
density-density correlation es(r)e8(r') is a rotationally invariant quantity, which de- 
pends on r,r', and the angle 7 between r and r' only. Therefore in the integral in 
equation (5) the angles 6,8' and +' - 4 are not all independent variables. They are 
related by the relationship 

cosy = cosBcos0'+sin6sin6'cos(~'- 4). (7) 

The interaction potential U of equation (3) becomes 

where the imaginary part of the frequency-dependent surface density-response function 
Dlm(w) is defined as 

(I - m)! 
Im[Dl,(w)] 2 2n- / drdr'r't2r"fad(cos6')d(cosO')d($' - 4) 

(1 + m)! ~quation(7) 

x em(cos 6)PIm(cos O')eim($'-O)Im[X(r, r',y, 4' - $;U) ]  (9) 
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z (2’) 
1. 
I 

o,,, 

- 
R -  

9 - 

r 

with (for w > 0) 

n, 

(10) 

In evaluating the image and van der Waals potentials one needs to calculate the 
matrix elements (O/Bp,,,,,ln) in equation (8) in terms of multipole expansions with 
respect to the centre of the atom (ion). Usually one keeps only the monopole term in 
the image potential and the dipole terms in the van der Waals potential. This is what 
we have done here. Consider the coordinate systems shown in figure 1, The position 
vector r = (.,e,+) of the atomic charge-density operator B.,(r) (in equation (6)) has 
the origin at  0, the centre of the substrate. Now we have to express r in terms 
of T‘ = (r ‘ ,@‘,#) with the origin at  the centre of the atom (ion) 0‘. Let the two 
coordinate systems have a common =(?)-axis parallel to R,  the vector from 0 to 0’. 
In addition choose the 2- and 2‘-axes such that # = 4. Then to first order in r‘ 
(dipole terms), we have 

= I 
r’ 
R sin 0 = - sin B .  
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It  is easily seen that the matrix element (O~&p,fm~n) is zero for m 2 2 if we keep only 
monopole and dipole contributions. With approximations ( l l ) ,  we have 

For an ionsurface interaction, N - N' = Q # 0, and by keeping only the monopole 
contribution, the image potential is given by 

where R is the distance between the centre of the substrate and the nucleus of the 
ion. For an atom-surface interaction, N - N' = Q = 0, the van der Waals potential 
is given by 

U"dW(R) = - 
" 

where fn0  is the dipole oscillator strength for a transition from the atomic state 0 to 
state n with frequency uno. 

2.2. Cylindrical surface 
When the substrate has a cylindrical surface, it is convenient to express the position 
vector r in terms of the cylindrical coordinates (p ,  4, z). The appropriate expansion 
for 1/1r - r'l is (see for example [IS] p 118) 

m 

dqe"("-"')cos[q(z - z' ) ]Im(qp')Km(qp)  p > p' (15) 1 

m=-m 

where Zm(s) and Km(r) are the modified Bessel functions. By choosing the axis of 
the substrate as the z-axis, the absolute square of the matrix element (OO'lclnn') in 
equation (3) has the form 



5854 Ya-Chen Cheng 

The last equality of equation (16) is obtained by the fact that the substrate charge- 
density-density correlation &s(v)ks(r') is invariant under a rotation with respect to 
the z-axis or a translation parallel to the z-axis. The interaction potential U of 
equation (3) can be written as 

where the imaginary part of the frequency-dependent surface density-response function 
D,(q,w) is defined as 

Im[D,(q,w)] ?z 2a dpdp'dq5'dz' pp'ei9z'fi"9' J 
x ~,(lqlp)l,(Iql~')~m[xy(p,p',~', ~ ' ~ 1 1  (19) 

with (for w > 0) 

Im[x(p,p',# - 4 , ~ ' -  z;u)I = C(o'It,(p,o,o)In') 
n' 

x (n'[.?.,(p',q5'- q4,z'- z)[O')r6(En, - E,,, -w). (20) 
By using exactly the same approximations of equation (ll), except that in the cylin- 
drical coordinates the relevant angles are and 4' instead of B and O ' ,  we can expand 
the matrix elements ( O \ ? p , 9 m [ ~ )  in equation (18) in terms of the monopole and dipole 
terms of the atomic charge density +,,(T). However, except for the m = 0 compo- 
nent [21], we do not have closed forms for the expansion of K,,,(qp).  Because the 
small q contribution will dominate the self-energy U in equation (18), we do the small 
I expansion for K,,,(z). Finally we get the approximate expressions for the image 
potential and the van der Waals potential, respectively, in the following: 

and 

In equations (21) and (22), p is the distance between the axis of the substrate and 
the centre of the atom (ion). In the integrals for the m 2 1 components we introduce 
a cut-of q, qc, in the upper limit of the integrals over q as the integrands are valid 
for small q only. The large q contributions are negligible because the integrands are 
exponentially small, being proportional to exp(-2qp). The expressions (21) and (22) 
are only approximate and there is no unique way of determining qc. 
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3. Discussions and conclusions 

In the preceding section, we have derived the expressions for the i m a s  and van der 
Waals potentials between an ion, or an atom, and a conducting substrate with aspher- 
ical, or a cylindrical surface. In these expressions, as in the planar surface case [9, lo], 
an important physical quantity to be noted is the imaginary part of the frequency- 
dependent surface density-response function of the substrate Im[Q,(w)] in the spher- 
ical surface case, or Im[D,(q,w)] in the cylindrical surface case. The density-response 
function Dl,(w),  or D,(q ,w) ,  is the Fourier transform, with respect to space and 
time, of the retarded density correlation function DR(r , t ; r ' , t ' )  defined in the linear 
response theory (see for example [22], 

~ ~ ( 7 ,  t ; ~ ' , t ' )  -iO(t - t')(O'l[6sH(r,t), csH(r', t ' ) ] ! ~ ' ) .  (23) 

Here IO') is the normalized ground-state state-vector of the substrate; CSH(?,t) is 
the chargedensity operator of the suhst.rate in the (unperturbed) Heisenberg picture; 
[A, l?] is the commut,ator of the operators a and 5 ;  and O(z) is the usual step function, 

1 for z > 0 
0 for z < 0 

O(2) = (24) 

For insulating substrates electron-electron correlations are negligible and therefore it 
is no longer valid to expand the surface density-response function Dl,(w) or D,(q,u) 
as in equation (9) or (19). Instead, the surface density-response function D(u)  should 
depend on four indices (lm, i'm') for a spherical surface or (mp, m'q') for a cylindrical 
surface. With this expansion of the surface density-response function it is equivalent 
to express the image and the van der Waals potentials in terms of the more familiar 
multipole expansions of the atoms in the substrate. The absolute square of the matrix 
element (00'lVlnn') can be written in the following forms instead of equation (5) or 
(16): 
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with 

for the cylindrical surface case. For an insulating substrate the total charge-density 
distribution may be approximated by the sum of the charge density of each individual 
atom which consists of the substrate, i.e. 

where +*,+(r) is the atomic chargedensity operator for the ith atom in the substrate. 
The eigenstates of the substrate may be approximated by the linear combination of 
atomic orbitals with negligible overlaps between neighbouring orbi,tals. With these 
approximations, the absolute square of the matrix element l(OO'IVlnn')la in equa- 
tions (25) and (27) may be decomposed into the sum of pair interactions between 
the foreign particle and each individual atom in the substrate, Therefore for an in- 
sulating substrate, the image and van der Waals potentials may be approximated by 
the sum of pair potentials between the foreign particle and each individual atom in 
the substrate. Deviations from the simple sum may exist because overlaps between 
neighbouring orbitals are not strictly zero. However, the deviations are negligible for 
good insulators. 

On the other hand, for a conducting substrate the valence electrons are delocalized 
and the charge-density operator bs(r) cannot be approximated by the sum of atomic 
charge-density operators ta , , (r) .  Electron-electron correlations and, therefore, col- 
lective excitations play the most important role in the response of the substrate to 
external fields. The image and van der Waals potentials should, therefore, be expressed 
in terms of the density-response function defined in equation (9) or (19), instead of 
the ion-atom or the atom-atom pair interaction potentials. 

An exact calculation of the surface density-response function D(w) would need 
the knowledge of the wavefunctions and eigenvalues of the ground state and the ex- 
cited states of the substrate and therefore it is not an easy task. However, a simple 
approximated form ofIm[D(w)] can be obtained by noting that there is a simple rela- 
tion between D(w)  and the dielectric function ((U). From the approximated form of 
Im[D(w)] the asymptotic forms of the image and the van der Waals potentials can be 
easily derived. I t  can be shown [25] that the dielectric function ((U) and the surface 
density-response function D(w) has, respectively, the following relationship: 

for a spherical substrate and 

for a cylindrical substrate. In equations (30) and (31) a is the radius of the substrate 
(sphere or cylinder), and the component (q,,,(u) or E,(q,u)) of the diclectric function 
is defined as 
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for the spherical case, and 

for the cylindrical case. In equations (32) and (33) $ex (@Ot) is the external (total) 
potential in the substrate. 

From equation (30) or (31) we see that Im[D(w)] can be expressed in terms of 
Im[l/e(w)]. This has the advantage that it is easier to obtain an approximated form for 
the imaginary part of the inverse of the dielectric function. If we add an infinitesimal 
positive imaginary part to the frequency w, we would obtain Im[l/c(w)] as a measure 
of the roots of the equation c(w) = 0 (for each component). If we assume that there 
is at most only one root in each component, we have 

Im[Dlm(w)] = Alm(a)a2'+'6(w - wlm) (34) 

for the spherical surface case and 

for the cylindrical surface case. In equations (34) and (35), Alm(a) and Bm(q,a) 
have the dimension of frequency; w,,(w,(q)) is the root for the equation elm(w) = 0 
(em(q,w) = 0). Equations (34) and (35) can be considered as generalizations of 
the plasmon-pole approximation for a bulk conducting medium [24] and for a planar 
surface conducting substrate [9, lo]. If we choose A,,(a) = RW,, /~ ,  as in the bulk 
[24] and the planar surface case [9, 101, equation (13) will give, to lowest order, the 
well-known classical results of the image potential [18] for the grounded (with woo # 0, 
and thus A,, # 0) and the insulated (with woo = 0, and thus A,, = 0, and wl0  # 0) 
conducting sphere. For the cylindrical case we have no classical result with which to 
compare it, but it seems plausible that Bm(q, a) = rw,(q)/2 may also be correct. 

The physical meaning of the roots of the equation c(w) = 0 is well known in 
electrodynamics. The roots are the characteristic frequencies for which the medium 
can sustain self-oscillations even when the external potential is zero. These are known 
as the plasma frequencies. From equations (13), (14), (21) and (2'4, we see that 
the asymptotic forms of the image and van der Waals potentials are determined by 
the 1 = m = 0 mode in the spherical surface case and by the m = q = 0 mode in 
the cylindrical surface case. In either case (1 = m = 0 or m = q = 0), the mode 
corresponds to a uniform total potential and therefore an excitation with a uniform 
charge-density distribution in the medium. We may call this mode as the monopole 
term of the dielectric function. It is therefore important to investigate the roots of 
the monopole term of the dielectric function erm(w) = 0 and c,(q,w) = 0. From 
the Maxwell equations we know that the dielectric function of a conducting medium 
consists of two parts: one from the conduction current (see for example [I61 p 17) and 
one from the polarization of the medium. It is well known that in a bulk conducting 
medium the current-contributing dielectric function (i.e. the conductivity) will give 
rise a plasma frequency w,(q), which is non-vanishing for q = 0 (this is the mode 
with a constant external potential or zeTo external field and therefore is the monopole 
term). Thus the conduction current contributes a non-vanishing monopole term in 
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the imaginary part of the surface density-response function. We expect that  this 
conclusion will hold even when the medium has a surface. 

For an insulated conducting spherical substrate, there is no electric current and 
therefore the dielectric function does not contain the contribution of the current. 
Moreover, for this substrate the polarization of the medium will have no contribution to  
the monopole term of the dielectric function either as both 4;; and 4kt are zero and the 
equation E,,(w) = 0 has no solutions. Therefore for an insulated conducting spherical 
substrate the leading term in the surface density-response function ImD,,(w) = 0, 
and the lowest order contributions will come from I = 1 terms. The asymptotic 
forms of the image and van der Waals potentials are, therefore, Ulm,(R) - Rd4 and 
Uvdw(R) - R-6 respectively, the same as in the insulating substrate case. For a 
grounded conducting spherical substrate, the current term will have a contribution to 
the dielectric function and thus ImDoo(w) # 0. Therefore the asymptotic forms for 
the image and van der Waals potentials are Ulmg(R)  - R-* and Uvdw(R) - Re4 
respectively. 

For a conducting cylindrical substrate, because of its infinite extent, there is no 
distinction between whether it is grounded or insulated. The conductivity always con- 
tributes to the dielectric function, and therefore we always have Im[D,(q = O,w)] # 0. 
This means that the constant in equation (35) B,(q = 0 ,a )  # 0. However in ob- 
taining the asymptotic forms of the image and van der Waals potentials we should 
also consider the effect of the factor l o ( q a ) / K , ( q a )  in equation (35). Because both 
K 0 ( z )  and K1(z) vanish as e-"/,/F for large z and diverge as I In +I and l /z,  respec- 
tively, for small z; Io(.) approaches a constant for small z and diverges as e/,,& for 
large z ,  therefore the integrals over p in equations (21) and (22) will be dominated 
by small q contributions. The factor Io(qa)/Ko(qa) will behave like l / ~ l n ( q a ) ~ ~  From 
equations (21) and (22) we obtain the asymptotic forms of the image and the van 
der Waals potentials as U1,,(p) - (pInp)-' and UvdW(p) - (p31np)-', respectively. 
These asymptotic forms are quite different from those of the insulating cylindrical 
surface, which predicts a p-3 and a p-s-dependence, respectively. I t  is to be noted 
that not only the powers of the inverse of p are different, but that in the conducting 
cylindrical surface a non-power factor (Inp)" appears. This factor comes from the 
factor I0(qa)&(qa) in equation (35) which in turn comes from the boundary condi- 
tion at the surface. This example tells us that electron-electron correlations and the 
collective excitations in a conducting substrate play important roles in response to ex- 
ternal fields. For an insulating substrate electron-electron correlations are negligible 
and it may, sometimes, behave quite direrently from a conducting substrate with the 
same shape of surface. 

In conclusion, we have derived expressions for the image and the van der Waals 
potentials, respectively, for a conducting substrate with a spherical and a cylindri- 
cal surfaces, which are valid for all ion-surface, or atomsurface, separations. The 
asymptotic forms of these potentials are obtained and compared with those of the 
insulating substrate with the same shape of surface. We find that for the case of 
an insulated uncharged spherical substrate, along with the planar surface case, the 
asymptotic behaviours of the image and the van der Waals potentials are the same for 
both conducting and insulating substrates. For other cases, however, the asymptotic 
behaviours are quite different for conducting and insulating substrates. For exam- 
ple, a grounded conducting spherical surface gives lower inverse power laws for the 
image (R-a in contrast to R-4) and the van der Waals potentials (R-4  in contrast 
to R-6)  than an insulating spherical substrate does. The most striking case is the 
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one for a conducting cylindrical surface. The asymptotic forms of the image and the 
van der Waals potentials can no longer be expressed as simple inverse power laws of 
the particle-surface separation. It behaves, respectively, like (pInp)-' for the image 
potential and like (p31np)-' for the van der Waals potential This is to be com- 
pared with a  law (for the image potential) and a  law (for the van der Waals 
potential) for an insulating cylindrical substrate. This example demonstrates that a 
conducting substrate may behave quite differently from an insulating substrate with 
the same shape of surface. The main difference between these two substrates is that 
electron-electron correlations are important in a conducting substrate but they are 
negligible in an insulating substrate. 

Acknowledgment 

This work is supported in part by the National Science Council of the Republic of 
China under contract no. NSC79-0208-M002-43. 

References 

[I] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 
[SI 
[9] 
[lo] 
1111 
[I21 
[I31 
[I41 
[I51 
1161 
[I71 

[18] 
[19] 
[ZO] 
1211 
[22] 

[23] 
1241 

Lucap A A 1971 Phys. Rev. B 4 2939 
Lmg N D and Kohn W 1973 Phyr. Rev. B 7 3541 
Heinrich J 1973 Phya. Reo. B 8 1346 
Harris J and Jones R D 1973 J.  Phys. C: Solid State Phyr. 6 3585 
Chan D and Richmond P 1976 3. Phyr. C: Solid State Phys. 9 163 
Flores F and Garcie-Moliner F 1979 3, Phys. C: Solid State Phys. 12 907 
Echenique P M, Ritchie R H, Barberan N m d  Inkson J C 1981 Phys. Rev. B 23 6486 
Manson J Rand Ritchie H 1981 Plays. REV. B 24 4867 
Annett J F and Eehenique P hl 1986 Phyr. Rev. B 34 6853 and references therein 
Annett J F and Echenique P M 1987 Phyr. Rev. B 36 8986 
Pemar 2 and Sunjic M 1984 Solid State Commun. 52 747 
Beck D E 1984 Phya. Rev. B 30 6935; 1987 Phyr. Re". 35 7325 
Ehrdt W 1984 Phys. Rea. Lett. 52 1925; 1985 Phga. Rev. B 31 6360 
Push M J,  Nieminen R M and hlanninen M 1985 Phys. Rev. B 31 3486 
Feme1 T L and Echenique P M 1985 Phya. Rev. Lett. 55 1526 
Langbein D 1974 Vnn Der Waals Attrnetiota (Berlin: Springer) 
Ashcroft N W and Mermin N D 1976 Solid State Physics (New York: Holt. Rinehart and 

Jackson J D 1975 Claasicol Electrodynamics 2nd edn (New York: Wiley) pp 57-9 
Apell S P and Pcnn D R 1986 Phys. Re". B 34 6612 
Cheng Y C and Lin K C 1988 Chin. J.  P h p .  26 212 
Cheng Y C and Yang J S 1990 Phya. Rev. B 41 1196 
Fetter A L and Wale& J D 1971 Qranttrm Theory of Many-Particle Systems (New York: 

Cheng Y C and Tu I P to be published 
Tung C J and Kwei C M 1985 Nuel. Inrtrum. Mcth. Phys. Res. B 12 464 

Winstm) p 393 

MeGraw Hill) p 173 


